
i

Sustainable Web Development
with Ruby on Rails

Practical Tips for Building Web Applications that Last

David Bryant Copeland

This sample is copyright ©2023 by David Bryant Copeland, All Rights
Reserved. All text, code, images, and diagrams were produced
without any assistance from any generative AI. See http://declare-
ai.org/1.0.0/declare.html for details.

For more information about this book, visit https://sustainable-rails.com

Contents

Contents

Acknowledgements 1

Changes from Previous Versions 3
Nov 5, 2025 - This Version . 3
Jan 1, 2025 . 3
Dec 4, 2023 . 5
March 15, 2022 . 7
January, 21, 2021 . 7
December, 12, 2020 . 7

I Introduction

1 Why This Book Exists 11
1.1 What is Sustainability? . 11
1.2 Why Care About Sustainability? 12
1.3 How to Value Sustainability 12
1.4 Assumptions . 14

1.4.1 The Software Has a Clear Purpose 14
1.4.2 The Software Needs To Exist For Years 15
1.4.3 The Software Will Evolve 15
1.4.4 The Team Will Change 15
1.4.5 You Value Sustainability, Consistency, and Quality . . 15

1.5 Opportunity and Carrying Costs 17
1.6 Why should you trust me? 18

2 Business Logic (Does Not Go in Active Records) 21
2.1 Business Logic Makes Your App Special. . . and Complex . . . 22

2.1.1 Business Logic is a Magnet for Complexity 22
2.1.2 Business Logic Experiences Churn 22

2.2 Bugs in Commonly-Used Classes Have Wide Effects 23
2.3 Business Logic in Active Records Puts Churn and Complexity

in Critical Classes . 25
2.4 Active Records Were Never Intended to Hold All the Business

Logic . 28
2.5 Example Design of a Feature 29

3 The Database 35
3.1 Logical and Physical Data Models 35
3.2 Create a Logical Model to Build Consensus 36
3.3 Planning the Physical Model to Enforce Correctness 39

3.3.1 The Database Should Be Designed for Correctness . 39
3.3.2 Use a SQL Schema 40
3.3.3 Use TIMESTAMP WITH TIME ZONE For Timestamps . . 41
3.3.4 Planning the Physical Model 42

3.4 Creating Correct Migrations 47
3.4.1 Creating the Migration File and Helper Scripts 50
3.4.2 Iteratively Writing Migration Code to Create the Cor-

rect Schema . 52
3.5 Writing Tests for Database Constraints 60

Acknowledgements
If there were no such thing as Rails, this book would be, well, pretty strange.
So I must acknowledge and deeply thank DHH and the Rails core team for
building and maintaining such a wonderful framework for all of us to use.

I have to thank my wife, Amy, who gave me the space and encouragement
to work on this. During a global pandemic. When both of us were briefly
out of work. And we realized our aging parents require more care than we
thought. And when we got two kittens named Carlos Rosario and Zoni. And
when we bought a freaking car. And when I joined a pre-seed startup. It’s
been quite a time.

I also want to thank the technical reviewers, Noel Rappin, Chris Gibson,
Zach Campbell, Lisa Sheridan, Raul Murciano, Geoff The, and Sean Miller.
Also special thanks to Brigham Johnson for identifying an embarrassing
number of typos.

1

Changes from Previous
Versions

This book is intended to be somewhat timeless, and able to be used as a
reference. Much of what’s in here hasn’t changed and I wouldn’t expect it
to. That said, some things have changed, and this section captures them.

Nov 5, 2025 - This Version

This is updated for Rails 8.1

• General Changes

– Update dependencies in dev environment.
– Update to dev environment Dockerfile.dx to install the Postgres

client and Node in a more modern way. Whoever said Docker
produces repeatable builds is very wrong.

• Chapter 4

– Rails now provides bin/ci which can be used instead of creating
one from scratch. Code instead modifies config/ci.rb to match
the behavior in previous versions of the book.

– Rails 8.1 provides a structured event logging system that can
work with a logger. This is mentioned briefly.

• Chapter 19

– In the test environment, set Sidekiq’s logger to “warn” to avoid
info-level log in all CLI output.

– Slight tweaks to wording around Solid Queue (guidance is still
the same).

Jan 1, 2025

This is updated for Rails 8 and Ruby 3.4.

• General Changes

– Examples testing and working with Rails 8 and Ruby 3.4.
– Use Valkey instead of Redis, since Valkey is open source.

3

– Re-ordered this section to show recent changes first.
– OpenStruct requires require "ostruct" now.

• Chapter 4

– Brakeman is included with Rails.

• Chapter 9

– Added additional caveats around functional CSS with respect to
custom elements and managing re-use.

– Removed Tachyons in favor of very basic CSS needed for the
app. Since Sprockets is no longer included in Rails and since
Tachyons cannot easily be overridden without additional tooling,
it seemed easier to re-focus the CSS section on the concept of a
design system and style guide. I did consider replacing Tachyons
with TailwindCSS, since that is currently popular, but it brought
in a ton of complexity that would require a lot of explanation not
relevant to the overall focus of the chapter.

– Included a new subsection emphasizing just how difficult CSS is
to manage and to not underestimate it.

• Chapter 10

– Changed use of setProgressBarDelay to progressBarDelay
(from Turbo.config.drive), per deprecation warnings in the
JavaScript console.

• Chapter 11

– Changed the vanilla JS section to use HTML Custom Elements,
which should be the preferred approach when not using a frame-
work.

• Chapter 14

– Expanded on TIMESTAMPTZ to explain the care needed in changing
the default type for an existing app.

• Chapter 19

– Changed installation of Foreman to happen inside bin/setup
instead of from the Gemfile, per advice from Foreman’s docs.

– Section with thoughts on how to think about Solid Queue.

• Chapter 20

– Changed recommendations and thoughts around Action Cable
and Active Storage.

• Chapter 24

– Added section on how to decide if you should use the included
Dockerfile and/or Kamal.

4

Dec 4, 2023

This is a more substantial update that previous updates. Chapter numbers
refer to the PDF or printed book’s numbering. e-book numbering continues
to be a byzantine nightmare.

• General Changes

– Updated for Rails 7.1.
– Updated for Ruby 3.2
– Added explicit language in each section about where to find the

sample code for that section.
– New cover

• Chapter 1

– Update my experience, given the passage of time.

• Chapter 4

– Remove mention of Spring and Listen, since they aren’t included
and haven’t been in a few versions.

– Remove mention of having to add the rexml gem, since selenium-
webdriver brings it in.

– Change bin/run to bin/dev, since this matches what Rails does
(sometimes).

– Remove mention of having to bundle update Thor.
– Added help flags to the various bin/ scripts.

• Chapter 5

– Added a new section that references “Patterns of Enterprise Ap-
plication Architecture”, since this where the active record pattern
originated.

• Chapter 7

– Recommend the use of View Components
– Recommend strict locals for partials

• Chapter 8

– Clarify that helpers can be made to be modular, and discuss
configuring Rails to either treat them that way or to not generate
falsely-modular helpers.

– More strongly discourage presenter-like libraries, and remove a
lot of content around managing them.

– In place of presenters, discuss how using Active Model or View
Components can manage complexity instead of gobs of helpers.

• Chapter 9

5

– Clear warning about Tailwind’s lack of built-in design system and
what you should consider if adopting it.

• Chapter 11

– Qualify the recommendation for Hotwire given that 37 Signals
have made it clear they will change it however they like whenever
they like.

• Chapter 15

– Reference “Patterns of Enterprise Application Architecture” and
its definition of a service layer, which is what this chapter de-
scribes.

– Make it clear that the term “Service Objects” is not a service layer
and is actually just another name for the command pattern (and
that you should not use this pattern).

• Chapter 16

– Replace use of before_validation callback with the new
normalizes macro

– Make a stronger case for not using callbacks by clarifying exactly
what they do and are for.

• Chapter 17

– Replace the re-usable partial with a View Component in the
example.

• Chapter 23

– Show code to monkey-patch Thor to make it useful for Rails
generators.

– Discourage the use of app templates in favor of template reposi-
tories.

• Chapter 24

– Use CurrentAttributes to store information for the log instead
of thread local storage.

– Discuss the need to revisit security practices, along with an anec-
dote from a previous job.

• Appendix A

– Re-work Docker stuff based on updated learnings and code.
– Explainer on getting your own shell aliases or software into the

dev container.

6

March 15, 2022

• Updated for Rails 7
• Removal of all NodeJS-related stuff, including removal and re-thinking

of the value of unit-testing JavaScript.
• Softened language around using React by default given Hotwire’s

existence.
• Changed guidance around nested routes to account for content-heavy

marketing pages.
• Clarified the use of controller instance variables for managing UI state.
• Links to gems extracted from code based on the book.

January, 21, 2021

• No need to disable Ajax form submissions by default, since Rails 6.1
changed the default behavior.

• Use of add_check_constraint and add_index instead of SQL wrapped
in reversible.

• Fixed color issues with sidebars on some e-readers

December, 12, 2020

• Updated for Rails 6.1 to remove deprecated method of setting errors
on Active Records

7

PART

I

introduction

1

Why This Book Exists
Rails can scale. But what does that actually mean? And how do we do it?
This book is the answer to both of these questions, but instead of using
“scalable”, which many developers equate with “fast performance”, I’m using
the word “sustainable”. This is really what we want out of our software: the
ability to sustain that software over time.

Rails itself is an important component in sustainable web development,
since it provides common solutions to common problems and has reached a
significant level of maturity. But it’s not the complete picture.

Rails has a lot of features and we may not need them all. Or, we may
need to take some care in how we use them. Rails also leaves gaps in your
application’s architecture that you’ll have to fill (which makes sense, since
Rails can’t possibly provide everything your app will need).

This book will help you navigate all of that.

Before we begin, I want to be clear about what sustainability means and why
it’s important. I also want to state the assumptions I’m making in writing
this, because there is no such thing as universal advice—there are only
recommendations that apply in a given context.

1.1 What is Sustainability?

The literal interpretation of sustainable web development is web devel-
opment that can be sustained. As silly as that definition is, I find it an
illuminating restatement.

To sustain the development of our software is to ensure that it can continue
to meet its needs. A sustainable web app can easily suffer new requirements,
increased demand for its resources, and an increasing (or changing) team
of developers to maintain it.

A system that is hard to change is hard to sustain. A system that can’t avail
itself of the resources it needs to function is hard to sustain. A system that
only some developers can work on is hard to sustain.

Thus, a sustainable application is one in which changes we make tomorrow
are as easy as changes are today, for whatever the application might need to
do and whoever might be tasked with working on it.

11

So this defines sustainability, but why is it important?

1.2 Why Care About Sustainability?

Most software exists to meet some need, and if that need will persist over
time, so must the software. Needs are subjective and vague, while software
must be objective and specific. Thus, building software is often a matter
of continued refinement as the needs are slowly clarified. And, of course,
needs have a habit of changing along the way.

Software is expensive, mostly owing to the expertise required to build and
maintain it. People who can write software find their skills to be in high
demand, garnering some of the highest wages in the world, even at entry
levels. It stands to reason that if a piece of software requires more effort to
enhance and maintain over time, it will cost more and more and deliver less
and less.

In an economic sense, sustainable software minimizes the cost of the soft-
ware over time. But there is a human cost to working on software. Working
on sustainable software is, well, more enjoyable. They say employees quit
managers, but I’ve known developers that quit codebases. Working on
unsustainable software just plain sucks, and I think there’s value in having a
job that doesn’t suck. . . at least not all of the time.

Of course, it’s one thing to care about sustainability in the abstract, but how
does that translate into action?

1.3 How to Value Sustainability

Sustainability is like an investment. It necessarily won’t pay off in the short
term and, if the investment isn’t sound, it won’t ever pay off. So it’s really
important to understand the value of sustainability to your given situation
and to have access to as much information as possible to know exactly how
to invest in it.

Predicting the future is dangerous for programmers. It can lead to over-
engineering, which makes certain classes of changes more difficult in the
future. To combat this urge, developers often look to the tenets of agile
software development, which have many cute aphorisms that boil down to
“don’t build software that you don’t know you need”.

If you are a hired consultant, this is excellent advice. It gives you a frame-
work to be successful and manage change when you are in a situation where
you have very little access to information. The strategy of “build for only
what you 100% know you need” works great to get software shipped with
confidence, but it doesn’t necessarily lead to a sustainable outcome.

For example, no business person is going to ask you to write log statements
so you can understand your code in production. No product owner is going

12

to ask you to create a design system to facilitate building user interfaces
more quickly. And no one is going to require that your database have
referential integrity.

The features of the software are merely one input into what software gets
built. They are a significant one just not the only one. To make better
technical decisions, you need access to more information than simply what
someone wants the software to do.

Do you know what economic or behavioral output the software exists to
produce? In other words, how does the software make money for the people
paying you to write it? What improvements to the business is it expected to
make? What is the medium or long-term plan for the business? Does it need
to grow significantly? Will there need to be increased traffic? Will there be
an influx of engineers? Will they be very senior, very junior, or a mix? When
will they be hired and when will they start?

The more information you can get access to the better, because all of this
feeds into your technical decision-making and can tell you just how sustain-
able your app needs to be. If there will be an influx of less experienced
developers, you might make different decisions than if the team is only
hiring one or two experienced specialists.

Armed with this sort of information, you can make technical decisions as
part of an overall strategy. For example, you may want to spend several
days setting up a more sustainable development environment. By pointing
to the company’s growth projections and your team’s hiring plans, that work
can be easily justified (see the sidebar “Understanding Growth At Stitch Fix”
on the next page for a specific example of this).

If you don’t have the information about the business, the team, or anything
other than what some user wants the software to do, you aren’t set up to do
sustainable development. But it doesn’t mean you shouldn’t ask anyway.

People who don’t have experience writing software won’t necessarily intuit
that such information is relevant, so they might not be forthcoming. But
you’d be surprised just how much information you can get from someone by
asking.

Whatever the answers are, you can use this as part of an overall technical
strategy, of which sustainability is a part. As you read this book, I’ll talk about
the considerations around the various recommendations and techniques.
They might not all apply to your situation, but many of them will.

Which brings us to the set of assumptions that this book is based on. In
other words, what is the situation in which sustainability is important and
in which this book’s recommendations apply?

13

Understanding Growth At Stitch Fix

During my first few months at Stitch Fix, I was asked to help improve the
operations of our warehouse. There were many different processes and we
had a good sense of which ones to start automating. At the time, there was
only one application—called HELLBLAZER—and it served up stitchfix.com.

If I hadn’t been told anything else, the simplest thing to do would’ve
been to make a /warehouse route in HELLBLAZER and slowly add features
for the associates there. But I had been told something else.

Like almost everyone at the company, the engineering team was told—
very transparently—what the growth plans for the business were. It needed
to grow in a certain way or the business would fail. It was easy to extrapolate
from there what that would mean for the size of the engineering team, and
for the significance of the warehouse’s efficiency. It was clear that a single
codebase everyone worked in would be a nightmare, and migrating away
from it later would be difficult and expensive.

So, we created a new application that shared HELLBLAZER’s database.
It would’ve certainly been faster to add code to HELLBLAZER directly, but
we knew doing so would burn us long-term. As the company grew, the
developers working on warehouse software were fairly isolated since they
worked in a totally different codebase. We replicated this pattern and, after
six years of growth, it was clearly the right decision, even accounting for
problems that happen when you share a database between apps.

We never could’ve known that without a full understanding of the com-
pany’s growth plans, and long-term vision for the problems we were there
to solve.

1.4 Assumptions

This book is prescriptive, but each prescription comes with an explanation,
and all of the book’s recommendations are based on some key assumptions
that I would like to state explicitly. If your situation differs wildly from the
one described below, you might not get that much out of this book. My
hope—and belief—is that the assumptions below are common, and that the
situation of writing software that you find yourself in is similar to situations
I have faced. Thus, this book will help you.

In case it’s not, I want to state my assumptions up front, right here in this
free chapter.

1.4.1 The Software Has a Clear Purpose

This might seem like nonsense, but there are times when we don’t exactly
know what the software is solving for, yet need to write some software to
explore the problem space.

14

Perhaps some venture capitalist has given us some money, but we don’t
yet know the exact market for our solution. Maybe we’re prototyping a
potentially complex UI to do user testing. In these cases we need to be
nimble and try to figure out what the software should do.

The assumption in this book is that that has already happened. We know
generally what problem we are solving, and we aren’t going to have to pivot
from selling shoes to providing AI-powered podiatrist back-office enterprise
software.

1.4.2 The Software Needs To Exist For Years

This book is about how to sustain development over a longer period of time
than a few months, so a big assumption is that the software actually needs
to exist that long!

A lot of software falls into this category. If you are automating a business
process, building a customer experience, or integrating some back-end
systems, it’s likely that software will continue to be needed for quite a while.

1.4.3 The Software Will Evolve

Sometimes we write code that solves a problem and that problem doesn’t
change, so the software is stable. That’s not an assumption I am making
here. Instead, I’m assuming that the software will be subject to changes big
and small over the years it will exist.

I believe this is more common than not. Software is notoriously hard to get
right the first time, so it’s common to change it iteratively over a long period
to arrive at optimal functionality. Software that exists for years also tends to
need to change to keep up with the world around it.

1.4.4 The Team Will Change

The average tenure of a software engineer at any given company is pretty
low, so I’m assuming that the software will outlive the team, and that the
group of people charged with the software’s maintenance and enhancement
will change over time. I’m also assuming the experience levels and skill-sets
will change over time as well.

1.4.5 You Value Sustainability, Consistency, and Quality

Values are fundamental beliefs that drive actions. While the other as-
sumptions might hold for you, if you don’t actually value sustainability,
consistency, and quality, this book isn’t going to help you.

15

Sustainability

If you don’t value sustainability as I’ve defined it, you likely didn’t pick up
this book or have stopped reading by now. You’re here because you think
sustainability is important, thus you value it.

Consistency

Valuing consistency is hugely important as well. Consistency means that
designs, systems, processes, components (etc.), should not be arbitrarily
different. Same problems should have same solutions, and there should not
be many ways to do something. It also means being explicit that personal
preferences are not critical inputs to decision-making.

A team that values consistency is a sustainable team and will produce sus-
tainable software. When code is consistent, it can be confidently abstracted
into shared libraries. When processes are consistent, they can be confidently
automated to make everyone more productive.

When architecture and design are consistent, knowledge can be transferred,
and the team, the systems, and even the business itself can survive poten-
tially radical change (see the sidebar “Our Uneventful Migration to AWS”
on the next page for how Stitch Fix capitalized on consistency to migrate
from Heroku to AWS with no downtime or outages).

Quality

Quality is a vague notion, but it’s important to both understand it and to
value it. In a sense, valuing quality means doing things right the first time.
But “doing things right” doesn’t mean over-engineering, gold-plating, or
doing something fancy that’s not called for.

Valuing quality is to acknowledge the reality that we aren’t going to be able
to go back and clean things up after they have been shipped. There is this
fantasy developers engage in that they can simply “acquire technical debt”
and someday “pay it down”.

I have never seen this happen, at least not in the way developers think it
might. It is extremely difficult to make a business case to modify working
software simply to make it “higher quality”. Usually, there must be some
catastrophic failure to get the resources to clean up a previously-made mess.
It’s simpler and easier to manage a process by which messes don’t get made
as a matter of course.

Quality should be part of the everyday process. Doing this consistently will
result in predictable output, which is what managers really want to see.
On the occasion when a date must be hit, cut scope, not corners. Only
the developers know what scope to cut in order to get meaningfully faster
delivery, but this requires having as much information about the business
strategy as possible.

16

When you value sustainability, consistency, and quality, you will be unlikely
to find yourself in a situation where you must undo a technical decision
you made at the cost of shipping more features. Business people may want
software delivered as fast as possible, but they really don’t want to go an
extended period without any features so that the engineering team can “pay
down” technical debt.

We know what sustainability is, how to value it, what assumptions I’m
making going in, and the values that drive the tactics and strategy for the
rest of the book. But there are two concepts I want to discuss that allow us
to attempt to quantify just how sustainable our decisions are: opportunity
costs and carrying costs.

Our Uneventful Migration to AWS

For several years, Stitch Fix used the platform-as-a-service Heroku. We
were consistent in how we used it, as well as in how our applications were
designed. We used one type of relational database, one type of cache, one
type of CDN, etc.

In our run-up to going public, we needed to migrate to AWS, which
is very different from Heroku. We had a team of initially two people and
eventually three to do the migration for the 100+ person engineering team.
We didn’t want downtime, outages, or radical changes in the developer
experience.

Because everything was so consistent, the migration team was able to
quickly build a deployment pipeline and command-line tool to provide a
Heroku-like experience to the developers. Over several months we migrated
one app and one database at a time. Developers barely noticed, and our
users and customers had no idea.

The project lead was so confident in the approach and the team that
he kept his scheduled camping trip to an isolated mountain in Colorado,
unreachable by the rest of the team as they moved stitchfix.com from
Heroku to AWS to complete the migration. Consistency was a big part of
making this a non-event.

1.5 Opportunity and Carrying Costs

An opportunity cost is basically a one-time cost to produce something. By
committing to work, you necessarily cut off other avenues of opportunity.
This cost can be a useful lens to compare two different approaches when
trying to perform a cost/benefit analysis. An opportunity cost that we’ll take
in a few chapters is writing robust scripts for setting up our app, running it,
and running its tests. It has a higher opportunity cost than simply writing
documentation about how to do those things.

But sometimes an investment is worth making. The way to know if that’s
true is to talk about the carrying cost. A carrying cost is a cost you have to

17

pay all the time every time. If it’s difficult to run your app in development,
reading the documentation about how to do so and running all the various
commands is a cost you pay frequently.

Carrying costs affect sustainability more than anything. Each line of code is
a carrying cost. Each new feature has a carrying cost. Each thing we have
to remember to do is a carrying cost. This is the true value provided by
Rails: it reduces the carrying costs of a lot of pretty common patterns when
building a web app.

To sustainably write software requires carefully balancing your carrying
costs, and strategically incurring opportunity costs that can reduce, or at
least maintain, your carrying costs.

If there are two concepts most useful to engineers, it is these two.

The last bit of information I want to share is about me. This book amounts
to my advice based on my experience, and you need to know about that,
because, let’s face it, the field of computer programming is pretty far away
from science, and most of the advice we get is nicely-formatted survivorship
bias.

1.6 Why should you trust me?

Software engineering is notoriously hard to study and most of what exists
about how to write software is anecdotal evidence or experience reports.
This book is no different, but I do believe that if you are facing problems
similar to those I have faced, there is value in here.

So I want to outline what my experience is that has led to me recommend
what I do in this book.

The most important thing to know about me is that I’m not a software
consultant, nor have I been in a very long time. For the past fifteen years
I have been a product engineer (or part of a project engineering team),
working for companies building one or more products designed to last. I
was a rank and file engineer at times, a manager on occasion, an architect
responsible for technical strategy and, most recently, Chief Technology
Officer (CTO) at a venture-backed startup. I’ve written a lot of code and set
a lot of technical and product strategy.

What this means is that the experience upon which this book is based comes
from actually building software meant to be sustained. I have actually
done—and seen the long-term results of doing—pretty much everything
in this book. I’ve been responsible for sustainable software several times
during my career.

• I spent four years at an energy startup that sold enterprise software. I
saw the product evolve from almost nothing to a successful company
with many clients and over 100 engineers. While the software was

18

Java-based, much of what I learned about sustainability applies to the
Rails world as well.

• I spent the next year and half at an e-commerce company that had
reached what would be the peak of its success. I joined a team of
almost 200 engineers, many of whom were working in a huge Rails
monolith that contained thousands of lines of code, all done “The Rails
Way”. The team had experienced massive growth and this growth was
not managed. The primary application we all worked in was wholly
unsustainable and had a massive carrying cost simply existing.

• I then spent the next six and half years at Stitch Fix, where I was the
third engineer and helped set the technical direction for the team. By
the time I left, the team was 200 engineers, collectively managing a
microservices-based architecture of over 50 Rails applications, many
of which I contributed to. At that time I was responsible for the
overall technical strategy for the team and was able to observe which
decisions we made in 2013 ended up being good (or bad) by 2019.

• I was CTO of a healthcare startup, having written literally the first line
of code, navigating the tumultuous world of finding product/market
fit, becoming HIPAA1-compliant, and trying to never be a bottleneck
for what the company needed to do.

What I don’t have much experience with is working on short-term greenfield
projects, or being dropped into a mess to help clean it up (so-called “Rails
Rescue” projects). There’s nothing wrong with this kind of experience, but
that’s not what this book is about.

What follows is what I tried to take away from the experience above, from
the great decisions my colleagues and I made, to the unfortunate ones as
well (I pushed hard for both Coffeescript and Angular 1 and we see how
those turned out).

But, as they say, your mileage may vary, “it depends”, and everything is a
trade-off. I will do my best to clarify the trade-offs.

Up Next

This chapter should’ve given you a sense of what you’re in for and whether
or not this book is for you. I hope it is!

So, let’s move on. Because this book is about Ruby on Rails, I want to give
an overview of the application architecture Rails provides by default, and
how those pieces relate to each other. From that basis, we can then deep
dive into each part of Rails and learn how to use it sustainably.

1HIPAA is the Health Insurance Portability and Accountability Act, a curious law in the
United States related to how healthcare information is managed. Like all compliance-related
frameworks, it thwarts sustainability, but it’s a fact of life in the U.S.

19

2

Business Logic (Does Not
Go in Active Records)

Much of this book contains strategies and tactics for managing each part
of Rails in a sustainable way. But there is one part of every app that Rails
doesn’t have a clear answer for: the business logic.

Business logic is the term I’m going to use to refer to the core logic of your
app that is specific to whatever your app needs to do. If your app needs to
send an email every time someone buys a product, but only if that product
ships to Vermont, unless it ships from Kansas in which case you send a text
message. . . this is business logic.

The biggest question Rails developers often ask is: where does the code
for this sort of logic go? Rails doesn’t have an explicit answer. There is no
ActiveBusinessLogic::Base class to inherit from nor is there a bin/rails
generate business-logic command to invoke.

This chapter outlines a simple strategy to answer this question: do not put
business logic in Active Records. Instead, put each bit of logic in its own
class, and put all those classes somewhere inside app/ like app/services or
app/businesslogic.

The reasons don’t have to do with moral purity or adherence to some object-
oriented design principles. They instead relate directly to sustainability by
minimizing the impact of bugs found in business logic. That said, Martin
Fowler—who popularized the active record pattern upon which Active
Record is based—does not recommend putting all business logic in active
records, either.

We’ll learn that business logic code is both more complex and less stable
than other parts of the codebase. We’ll then talk about fan-in which is a
rough measure of the inter-relations between modules in our system. We’ll
bring those concepts together to understand how bugs in code used broadly
in the app—such as Active Records—can have a more serious impact than
bugs in isolated code.

So, let’s jump in. What’s so special about business logic?

21

2.1 Business Logic Makes Your App Special. . . and
Complex

Rails is optimized for so-called CRUD, which stands for “Create, Read,
Update, and Delete”. In particular, this refers to the database: we create
database records, read them back out, update them, and sometimes delete
them.

Of course, not every operation our app needs to perform can be thought
of as manipulating a database table’s contents. Even when an operation
requires making changes to multiple database tables, there is often other
logic that has to happen, such as conditional updates, data formatting and
manipulation, or API calls to third parties.

This logic can often be complex, because it must bring together all sorts of
operations and conditions to achieve the result that the domain requires it
to achieve.

This sort of complexity is called necessary complexity (or essential complexity)
because it can’t be avoided. Our app has to meet certain requirements, even
if they are highly complex. Managing this complexity is one of the toughest
things to do as an app grows.

2.1.1 Business Logic is a Magnet for Complexity

While our code has to implement the necessary complexity, it can often be
even more complex due to our decisions about how the logic gets imple-
mented. For example, we may choose to manage user accounts in another
application and make API calls to it. We didn’t have to do that, and our
domain doesn’t require it, but it might be just the way we ended up building
it. This kind of complexity is called accidental or unnecessary complexity.

We can never avoid all accidental complexity, but the distinction to necessary
complexity is important, because we do have at least limited control over
accidental complexity. The better we manage that, the better able we are to
manage the code to implement the necessarily complex logic of our app’s
domain.

What this means is that the code for our business logic is going to be more
complex than other code in our app. It tends to be a magnet for complexity,
because it usually contains the necessarily complex details of the domain as
well as whatever accidentally complexity that goes along with it.

To make matters worse, business logic also tends to change frequently.

2.1.2 Business Logic Experiences Churn

It’s uncommon for us to build an app and then be done with it. At best, the
way we build apps tends to be iterative, where we refine the implementation
using feedback cycles to narrow in on the best implementation. Software

22

is notoriously hard to specify, so this feedback cycle tends to work the best.
And that means changes, usually in the business logic. Changes are often
called churn, and areas of the app that require frequent changes have high
churn.

Churn doesn’t necessarily stop after we deliver the first version of the app.
We might continue to refine it, as we learn more about the intricacies of the
problem domain, or the world around might change, requiring the app to
keep up.

This means that the part of our app that is special to our domain has high
complexity and high churn. That means it’s a haven for bugs.

North Carolina State University researcher Nachiappan Nagappan, along
with Microsoft employee Richard Ball demonstrated this relationship in
their paper “Use of Relative Code Churn Measures to Predict System Defect
Density”1, in which they concluded:

Increase in relative code churn measures is accompanied by an increase
in system defect density [number of bugs per line of code]

Hold this thought for a moment while we learn about another concept in
software engineering called fan-in.

2.2 Bugs in Commonly-Used Classes Have Wide Effects

Let’s talk about the inter-dependence of pieces of code. Some methods
are called in only one place in the application, while others are called in
multiple places.

Consider a controller method. In most Rails apps, there is only one way
a controller method gets called: when an HTTP request is issued to a
specific resource with a specific method. For example, we might issue an
HTTP GET to the URL /widgets. That will invoke the index method of the
WidgetsController.

Now consider the method find on User. This method gets called in many
more places. In applications that have authentication, it’s possible that
User.find is called on almost every request.

Thus, if there’s a problem with User.find, most of the app could be affected.
On the other hand, a problem in the index method of WidgetsController
will only affect a small part of the app.

We can also look at this concept at the class level. Suppose User in-
stances are part of most pieces of code, but we have another model called
WidgetFaxOrder that is used in only a few places. Again, it stands to

1https://www.st.cs.uni-saarland.de/edu/recommendation-systems/papers/ICSE05Chu
rn.pdf

23

https://www.st.cs.uni-saarland.de/edu/recommendation-systems/papers/ICSE05Churn.pdf
https://www.st.cs.uni-saarland.de/edu/recommendation-systems/papers/ICSE05Churn.pdf

reason that bugs in User will have wider effects compared to bugs in
WidgetFaxOrder.

While there are certain other confounding factors (perhaps WidgetFaxOrder
is responsible for most of our revenue), this lens of class dependencies is a
useful one.

The concepts here are called fan-out and fan-in. Fan-out is the degree to
which one method or class calls into other methods or classes. Fan-in is what
I just described above and is the inverse: the degree to which a method or
class is called by others.

What this means is that bugs in classes or methods with a high fan-in—
classes used widely throughout the system—can have a much broader
impact on the overall system than bugs in classes with a low fan-in.

Consider the system diagrammed in the figure below. We can see
that WidgetFaxOrder has a low fan-in, while Widget has a high one.
WidgetFaxOrder has only one incoming “uses” arrow pointing to it. Widget
has two incoming “uses” arrows, but is also related via Active Record to two
other classes.

Figure 2.1: System Diagram to Understand Fan-in

Consider a bug in WidgetFaxOrder. The figure “Bug Effects of a Low Fan-in
Module” on the next page outlines the effected components. This shows
that because WidgetFaxOrder has a bug, it’s possible that OrdersController
is also buggy, since it relies on WidgetFaxOrder. The diagram also shows
that it’s highly unlikely that any of the rest of the system is affected, because
those parts don’t call into WidgetFaxOrder or any class that does. Thus, we
are seeing a worst case scenario for a bug in WidgetFaxOrder.

24

Figure 2.2: Bug Effects of a Low Fan-in Module

Now consider if instead Widget has a bug. The figure “Bug Effects of a High
Fan-in Module” on the next page shows how a broken Widget class could
have serious effects throughout the system in the worst case. Because it’s
used directly by two controllers and possibly indirectly by another through
the Active Record relations, the potential for the Widget class to cause a
broad problem is much higher than for WidgetFaxOrder.

It might seem like you could gain a better understanding of this problem
by looking at the method level, but in an even moderately complex system,
this is hard to do. The system diagrammed here is vastly simplified.

What this tells me is that the classes that are the most central to the app
have the highest potential to cause serious problems. Thus it is important to
make sure those classes are working well to prevent these problems.

A great way to do that is to minimize the complexity of those classes as well
as to minimize their churn. Do you see where I’m going?

2.3 Business Logic in Active Records Puts Churn and
Complexity in Critical Classes

We know that the code that implements business logic is among the most
complex code in the app. We know that it’s going to have high churn. We
know that these two factors mean that business logic code is more likely to
have bugs. And we also know that bugs in classes widely used throughout
the app can cause more serious systemic problems.

25

Figure 2.3: Bug Effects of a High Fan-in Module

So why would we put the code most likely to have bugs in the classes
most widely used in the system? Wouldn’t it be extremely wise to keep
the complexity and churn on high fan-in classes—classes used in many
places—as low as possible?

If the classes most commonly used throughout the system were very stable,
and not complex, we minimize the chances of system-wide bugs caused
by one class. If we place the most complex and unstable logic in isolated
classes, we minimize the damage that can be done when those classes have
bugs, which they surely will.

Let’s revise the system diagram to show business logic functions on the
Active Records. This will allow us to compare two systems: one in which
we place all business logic on the Active Records themselves, and another
where that logic is placed on isolated classes.

Suppose that the app shown in the diagram has these features:

• Purchase a widget
• Purchase a widget by fax
• Search for a widget
• Show a widget
• Rate a widget
• Suggest a widget rated similar to another widget you rated highly

I’ve added method names to the Active Records where these might go in the
figure “System with Logic on Active Records” on the next page. You might

26

put these methods on different classes or name them differently, but this
should look pretty reasonable for an architecture that places business logic
on the Active Records.

Figure 2.4: System with Logic on Active Records

Now consider an alternative. Suppose that each bit of business logic had
its own class apart from the Active Records. These classes accept Active
Records as arguments and use the Active Records for database access, but
they have all the logic themselves. They form a service layer between the
controllers and the database. We can see this in the figure below.

Figure 2.5: System with Business Logic Separated

27

Granted, there are more classes, so this diagram has more paths and seems
more complex, but look at the fan-in of our newly-introduced service layer
(the classes in 3-D boxes). All of them have low fan-in. This means that a
bug in those classes is likely to be contained. And because those classes are
the ones with the business logic—by definition the code likely to contain
the most bugs—the effect of those bugs is minimized.

And this is why you should not put business logic in your Active Records.
There’s no escaping a system in which a small number of Active Records are
central to the functionality of the app. But we can minimize the damage
that can be caused by making those Active Records stable and simple. And
to do that, we simply don’t put logic on them at all.

There are some nice knock-on effects of this technique as well. The business
logic tends to be in isolated classes that embody a domain concept. In our
hypothetical system above, one could imagine that WidgetPurchaser encap-
sulates all the logic about purchasing a widget, while WidgetRecommender
holds the logic about how we recommend widgets.

Both use Widget and User classes, which don’t represent any particular
domain concept beyond the attributes we wish to store in the database.
And, as the app grows in size and features, as we get more and more
domain concepts which require code, the Widget and User classes won’t
grow proportionally. Neither will WidgetRecommender nor WidgetPurchaser.
Instead, we’ll have new classes to represent those concepts.

In the end, you’ll have a system where churn is isolated to a small number
of classes, depended-upon by a few number of classes. This makes changes
safer, more reliable, and easier to do. That’s sustainable.

But don’t take my word for it. Martin Fowler, the person who coined and
first described the active record pattern that was inspiration for this part of
Rails encourages this as well, when your application is complex.

2.4 Active Records Were Never Intended to Hold All the
Business Logic

You may think that since Rails includes an implementation of the active
record pattern, and that pattern is loosely defined as an object that adds
domain logic to database data, we should follow the pattern the Rails Way
and put our logic on our Active Records.

Let’s set aside that this is an appeal to authority and let’s also set aside
that 99% of Active Record’s documentation and 100% of its API are about
database access. Is this actually what Martin Fowler, the author of Patterns
of Enterprise Application Architecture, intended? No.

Early in the book, Fowler talks about business logic:

28

Many designers, including me, like to divide “business logic” into two
kinds: “domain logic,” having to do purely with the problem domain
(such as strategies for calculating revenue recognition on a contract),
and “application logic,” having to do with application responsibili-
ties. . . sometimes referred to as “workflow logic”.

Later, when talking about the active record pattern, he is clear that the logic
you’d couple to your database schema is domain logic only:

Each Active Record is responsible for saving and loading to the database
and also for any domain logic that acts on the data.

“Domain logic that acts on the data” is certainly a subset of your application’s
business logic. For one, it doesn’t include application logic, as defined by
Fowler. Secondly, it doesn’t include domain logic that doesn’t “act on data”.
Fowler goes on to clarify this point:

Active Record is a good choice for domain logic that isn’t too complex,
such as creates, reads, updates, and deletes. Derivations and valida-
tions based on a single record work well in this structure. . . If your
business logic is complex, you’ll soon want to use your object’s direct
relationships, collections, inheritance, and so forth. These don’t map
easily onto Active Record, and adding them piecemeal gets very messy.

I have never worked on an application that was so simple it could keep all of
its logic in the Active Records. But I have definitely worked on applications
where application logic and database-agnostic domain logic were crammed
into the Active Records. It was not sustainable.

I mention this to really underscore that it’s not just me telling you not to put
all your business logic in Active Records. The guy that came up with it also
doesn’t think you should do that.

OK, let’s see an example of some code that doesn’t put business logic in the
Active Records.

2.5 Example Design of a Feature

Suppose we are building a feature to edit widgets. Here is a rough outline
of the requirements around how it should work:

1. A user views a form where they can edit a widget’s metadata.
2. The user submits the form with a validation error.
3. The form is re-rendered showing their errors.
4. The user corrects the error and submits the edit again.
5. The system then updates the database.

29

6. When the widget is updated, two things have to happen:

1. Depending on the widget’s manufacturer, we need to notify an
admin to approve of the changes

2. If the widget is of a particular type, we must update an inventory
table used for reporting.

7. The user sees a result screen.
8. Eventually, an email is sent to the right person.

This is not an uncommon amount of complexity. We will have to write a
bit of code to make this work, and it’s necessarily going to be in several
places. A controller will need to receive the HTTP request, a view will need
to render the form, a model must help with validation, a mailer will need to
be created for the emails we’ll send and somewhere in there we have a bit
of our own logic.

The figure below shows the classes and files that would be involved in this
feature. WidgetEditingService is probably sticking out to you.

Figure 2.6: Class Design of Feature

Here’s what that class might look like:

class WidgetEditingService
def edit_widget(widget, widget_params)

widget.update(widget_params)

if widget.valid?
create the InventoryReport
check the manufacturer to see who to notify
trigger the AdminMailer to notify the right person

end

widget
end

end

30

The code in the other classes would be more or less idiomatic Rails code
you are used to.

Here’s WidgetsController:

class WidgetsController < ApplicationController
def edit
@widget = Widget.find(params[:id])

end

def update
widget = Widget.find(params[:id])
@widget = WidgetEditingService.new.edit_widget(

widget, widget_params
)

if @widget.valid?
redirect_to widgets_path

else
render :edit, status: :unprocessable_entity

end
end

private
def widget_params

params.require(:widget).permit(:name, :status, :type)
end

end

Widget will have a few validations:

class Widget < ApplicationRecord
validates :name, presence: true

end

InventoryReport is almost nothing:

class InventoryReport < ApplicationRecord
end

AdminMailer has methods that just render mail:

31

class AdminMailer < ApplicationMailer
def edited_widget(widget)
@widget = widget

end

def edited_widget_for_supervisor(widget)
@widget = widget

end
end

Note that just about everything about editing a widget is in WidgetEditingService
(which also means that the test of this class will almost totally specify
the business process in one place). widget_params and the validations in
Widget do constitute a form of business logic, but to co-locate those in
WidgetEditingService would be giving up a lot. There’s a huge benefit to
using strong parameters and Rails’ validations. So we do!

Let’s see how this survives a somewhat radical change. Suppose that the
logic around choosing who to notify and updating the inventory record are
becoming too slow, and we decide to execute that logic in a background
job—the user editing the widget doesn’t really care about this part anyway.

The figure below shows the minimal change we’d make. The highlighted
classes are all that needs to change.

Figure 2.7: Design with a Background Job Added

We might imagine that WidgetEditingService is now made up of two meth-
ods, one that’s called from the controller and now queues a background job
and a new, second method that the background job will call that contains
the logic we are backgrounding.

class WidgetEditingService
def edit_widget(widget, widget_params)

widget.update(widget_params)

32

if widget.valid?
EditedWidgetJob.perform_later(widget.id)

end

widget
end

def post_widget_edit(widget)
create the InventoryReport
check the manufacturer to see who to notify
trigger the AdminMailer to notify whoever
should be notified

end
end

The EditedWidgetJob is just a way to run code in the background:

class EditedWidgetJob < ApplicationJob
def perform(widget_id)

widget = Widget.find(widget_id)
WidgetEditingService.new.post_widget_edit(widget)

end
end

As you can see, we’re putting only the code in the background job that has
to be there. The background job is given an ID and must trigger logic. And
that’s all it’s doing.

I’m not going to claim this is beautiful code. I’m not going to claim this
adheres to object-oriented design principles. . . whatever those are. I’m also
not going to claim this is how DHH would do it.

What I will claim is that this approach allows you to get a ton of value out
of Rails, while also allowing you to consolidate and organize your business
logic however you like. And this will keep that logic from getting intertwined
with HTTP requests, email, databases, and anything else that’s provided by
Rails. And this will help greatly with sustainability.

Do note that the “service layer” a) can be called something else, and b) can
be designed any way you like yet still reap these benefits. While I would
encourage you to write boring procedural code as I have done (and I’ll make
the case for it in “Business Logic Class Design” on page ??), you can use any
design you like.

33

Up Next

This will be helpful context about what’s to come. Even when isolating
business logic in standalone classes, there’s still gonna be a fair bit of code
elsewhere in the app. A lot of it ends up where we’re about to head: the
view. And the first view of your app that anyone ever sees is the URL, so
we’ll begin our deep-dive into Rails with routes.

34

3

The Database
For most apps, the data in its database is more important than the app
itself. If a cosmic entity swooped in and removed your app’s source code
from all of existence, you could likely recreate it, since you’d still have the
underlying data it exists to manage. If that same entity instead removed
your data. . . this would be an extinction-level event for your app.

What this thought experiment tells me is that the way data is managed and
stored requires a bit more care and rigor than is typically applied to code.
This “care and rigor” amounts to spending more time modeling the data
and using everything available in your database to keep the data correct,
precise, and consistent.

This contradicts Rails’ overly simplistic view of the database. By only follow-
ing Rails’ defaults, and designing your database when you write migrations,
you will eventually have inconsistent or incorrect data, and likely a fair bit
of unnecessary complexity in your code to deal with it.

That said, there are some realities about using a database we have to account
for:

• Databases provide much simpler types and validations than our code.
• Large or high-traffic databases can be hard to change.
• Databases are often consumed by more than just your Rails app.

To navigate this, we’ll talk about the logical model of the data—the one the
users talk about and understand—as distinct from the physical model—what
tables, columns, indexes, and constraints are actually in the database. With
regard to the physical model, we’ll break that down into two distinct steps
for development. We’ll learn how to decide what database structures you
want first, and then how to write a proper Rails migration to create them.

First, let’s define logical and physical models.

3.1 Logical and Physical Data Models

When you run bin/rails g migration to create a database migration,
you are manipulating the physical data model: the actual schema in the

35

database. The logical model is the data model as understood by users and
other interested parties. For simple domains, these models are often very
similar, but it’s important to understand the differences.

The logical model is a tool to get alignment between the developers who
build the app and the users or other stakeholders who know what problems
the app needs to solve. Users won’t usually care about physical elements
such as indexes, join tables, or reference data lookup tables when discussing
how the app should behave.

The logical model is in the language of the users, at the level of abstraction
they understand. This is often insufficient for properly managing the data,
but you can’t make a database without an understanding of the domain.

For example, a user will think that a widget has a status, or a manufacturer
has an address. This doesn’t mean that the widget table must have a status
column or that the manufacturer table has columns for each part of an
address. You may not want to (or be able to) model it that way in the
database.

See the figure “Example Logical and Physical Models” on the next page for
an example of a logical and physical model for a hypothetical widget and
manufacturer relationship.

It stands to reason, then, that you should create a logical model to build
alignment before you start thinking about the physical model.

3.2 Create a Logical Model to Build Consensus

The logical model is a tool to build consensus with the developers who must
write the software and anyone else that understands what the software must
do or what problems it must solve. The logical model is where you can
identify requirements for the data to be stored without worrying (yet) about
how to store it.

I recommend that the developers either lead this process or have final
approval, since this model is input into their work. While non-developers
can do a good job of drafting logical models, there are often some fine details
they miss that a developer will need to know in order to move forward.

I don’t want you to think of the logical model as some grandiose document
created by a formalized process. Often a single spreadsheet is sufficient.
No matter how you do it, I highly recommend writing it down and being
explicit. It’s usually sufficient to capture:

• The names of all entities or “things” to be managed
• For each attribute of those entities:

– The name of it
– What type of data it is

36

Figure 3.1: Example Logical and Physical Models

– Is it a required value?
– What other requirements are there, such as allowed values,

uniqueness, etc.

• For each entity, what uniquely identifies it? Can two entities have the
exact same values for all attributes and, if so, what does that mean?

For example:

37

Table 3.1: Example logical model as a spreadsheet

Entity Attribute Type Req? Other Requirements

Widget name String Y Unique to
manufacturer

Widget status String Y “Fresh”, “Approved”,
or “Archived”

Widget price Money Y Not negative, must
be less than $10,000

Widget created Date Y
Manufacturer name String Y Unique
Manufacturer address Address Y Street and Zip Code

are sufficient

However you draft this logical model, make sure you have a good sense of
the allowed values for each attribute. If the user uses attribute types like
“Address”, define a new entity called “Address” and identify its requirements.
For more general types like “String” or “Date”, try to get clarity on what
values are allowed. There are a lot of strings in the world and probably not
all of them are a valid widget status.

As to the uniqueness questions, getting these right can greatly reduce confu-
sion in the actual data. Often there are several sets of values that represent
uniqueness. For example, the widget ID we’ve discussed previously sounds
like a unique value. But you also may want widget names to be unique. It’s
fine to have multiple unique identifiers for entities, but it’s important to
understand all of them.

The less familiar you are with the domain, or the newer it is, the more time
you should spend exploring it before you start coding. Mistakes in data
modeling are difficult to undo later and can create large carrying costs in
navigating the problems created by insufficient modeling.

You don’t have to know everything, but even knowing how data might be
used is useful. While you don’t need to handle “someday, maybe” types of
requirements, thinking ahead can help.

Knowing how stable certain requirements are can help you properly translate
them to the physical model. Stable requirements can be enforced in the
database; unstable requirements might need to be enforced in code so they
can be more easily changed.

Once you have alignment, you can build the physical model, which you
should do in two steps: plan it, then create it.

38

3.3 Planning the Physical Model to Enforce Correctness

This section’s code is in the folder 14-03/ of the sample code.

Translating the logical model to the physical model requires making several
design decisions, especially as the app becomes more complex and needs to
manage more types of data.

This should be done in two discrete steps. This section discusses the first,
which is to plan exactly how you are going to store the data in the database.
The next section discusses how to write a Rails migration to implement this
plan.

Whereas the logical model was for building alignment and discovering
business rules, the physical model is for accurately managing data that
conforms to those rules. This means that correctness, precision, and accuracy
are paramount.

The design decisions you’ll make amount to how and where you will enforce
the correctness of the data. Your database is an incredibly powerful tool to
do this, and it’s where most of your constraints around correctness should
go.

3.3.1 The Database Should Be Designed for Correctness

Rails’ view of the database is that it’s more or less a dumb store and Rails—
via validations and other mechanisms—will keep the data correct. This is
unrealistic, even in simple circumstances. Active Record provides a public
API to bypass validations, and the reality of most systems is that Things That
Aren’t Rails will be accessing the database directly.

For example, it’s common to connect business and financial reporting sys-
tems directly to the app’s database. It’s often much more economical and
flexible to allow business users to query the data however they like than
to get developers to build custom views for them. Tools like Looker1 or
Heroku Dataclips2 provide ways of turning SQL into reports. Common data
warehousing techniques usually involve dumping the entire operational
database into another system where it can be analyzed.

If these systems have to deal with incorrect or ambiguous data, in the best
case, they will be complex and difficult to maintain. More realistically, the
reports will simply be wrong. If, on the other hand, these systems can rely
on the data in the database being correct and unambiguous, the reports are
more valuable and can lead to better decisions.

For simple to moderate requirements, you can use the database to absolutely
ensure the data is correct and precise. For complex requirements, you may

1https://looker.com
2https://devcenter.heroku.com/articles/dataclips

39

https://looker.com
https://devcenter.heroku.com/articles/dataclips

need to use code in addition to the database. Unstable requirements benefit
from being implemented in code, because the database will become harder
to change as time goes on. Stable or critical requirements, however, benefit
greatly from being enforced in the database.

No matter what, we’re going to use database-specific features. That requires
using a SQL schema instead of a Ruby-based one.

3.3.2 Use a SQL Schema

It’s rare to create an app that must connect to many different types of
databases. It’s also rare to migrate from one database type to another. Thus,
we should not be shy about using database-specific features whenever it
helps us meet our users’ needs. Rails’ API for managing the database doesn’t
provide access to all of these features, however.

This matters because Rails uses a schema file to maintain the test database,
as well as to initialize a development database in a fresh environment. We
need that schema to match production, so we cannot use db/schema.rb,
and instead must use SQL.

Fortunately, this is a one-line configuration change in config/application.rb

config/application.rb

per-controller helpers
g.helper false

end
→
→ # We want to be able to use any feature of our database,
→ # and the SQL format makes that possible
→ config.active_record.schema_format = :sql

end
end

Note that we added a comment as to why we made this change. It’s
important that all deviations from Rails’ defaults are understood by current
and future team members. Comments are an easy way to make that happen.
Git commit messages are not.

We should also delete db/schema.rb, since that will no longer be used. Rails
will store the SQL schema in db/structure.sql.

> rm db/schema.rb

40

I recommend this change for all database types, because it costs nothing
and provides a lot of benefit.

For Postgres specifically, we need to make another change, which is to use
TIMESTAMP WITH TIME ZONE for timestamps.

3.3.3 Use TIMESTAMP WITH TIME ZONE For Timestamps

The SQL standard provides for the TIMESTAMP fields to store. . . timestamps. A
timestamp is a number of milliseconds since a reference timestamp, usually
midnight on January 1, 1970 in UTC.

The TIMESTAMP data type does not store a time zone, however. Most data-
bases store timestamps in UTC and provide an automatic translation based
on. . . well, it’s complicated.

By default, the computer your database is running on is configured with a
system time zone. This can be hard to inspect or control. The connection to
the database itself can override this. The code that makes a connection to
the database can override this as well. Rails can override this. Your code
can override Rails.

This means that your timestamps will be translated using a reference time
zone that might not be obvious. And if the wrong reference is used when
reading those timestamps out, the reader can interpret the timestamp differ-
ently. Even though Rails defaults to using UTC, some other process might
be configured differently. This is extremely confusing.

Postgres provides the data type TIMESTAMPTZ (also known as TIMESTAMP WITH
TIME ZONE) that avoids this problem. It stores the reference time zone with
the timestamp so it’s impossible to misinterpret the value. Postgres expert
Dave Wheeler wrote a blog post3 that can provide you more details.

We can make Rails use this type by default. The class PostgreSQLAdapter
(which is in the ActiveRecord::ConnectionAdapters namespace) has an
attribute named datetime_type that allows overriding the default SQL type
used whenever a migration has a datetime in it.

We can set this to :timestamptz and all of our migrations will use
TIMESTAMPTZ instead of TIMESTAMP. This can be done anywhere
as long it loads when Rails does. Best place to do that is in
config/initializers/postgres.rb:

config/initializers/postgres.rb

require "active_record/connection_adapters/postgresql_adapter"

3https://justatheory.com/2012/04/postgres-use-timestamptz/

41

https://justatheory.com/2012/04/postgres-use-timestamptz/

ActiveRecord::ConnectionAdapters::PostgreSQLAdapter.datetime_type =
:timestamptz

Now, when we write code like t.timestamps or t.datetime, Rails will use
TIMESTAMP WITH TIME ZONE and all of our timestamps will be stored without
ambiguity or implicit dependence on the system time zone. See the sidebar
“Changing Timestamps in an Existing Database” on page 42 if you want to
use this in an existing app.

Changing Timestamps in an Existing Database

The change we discussed to datetime_type sets Rails’ behavior when the
type :datetime is used in a migration. If your app has existing migrations,
the interpretation of those migrations would change from their original
intent.

While you are unlikely to re-apply migrations in production, you want
to make sure that your migrations, db/structure.sql, and your databases—
production, test, and development—all agree.

One way to ensure this is to change any existing migration using
:datetime to use "timestamp". Rails always allows you to specify the
precise type in a migration. This means you can change the meaning of
:datetime safely:

1. Modify all migrations using :datetime to use "timestamp".
2. Modify all use of t.timestamps to create both created_at and

updated_at explicitly as having the type "timestamp".
3. Re-run migrations from scratch. There should be no change in your

db/structure.sql.
4. Create the initializer described above.
5. Again re-run migrations from scratch. There should again be no

change in your db/structure.sql.
6. You can now resume the use of :datetime and t.timestamps in new

migrations, safely knowing Rails will use TIMESTAMPTZ.

To actually change your database columns from timestamp to
timestamptz is out of scope of this book, but should be done with care—and
the consultation of the Postgres documentation.

With this base, we can start planning the physical model.

3.3.4 Planning the Physical Model

A formal way to model a database is called normalization, and it’s a dense
topic full of equations, confusing terms, and mathematical proofs. Instead,
I’m going to outline a simpler approach that might lack the precision of
theoretical computer science, but is hopefully more approachable.

42

Here’s how to go about it:

1. Create a table for each entity in the logical model.
2. Add columns to associate related models using foreign keys.
3. For each attribute, decide how you will enforce its requirements and

create the needed columns, constraints, and associated tables.
4. Create indexes to enforce all uniqueness constraints.
5. Create indexes for any queries you plan to run.

To do this, it’s immensely helpful if you understand SQL. In addition to
knowing how to model your data, knowing SQL allows you to understand
the runtime performance of your app, which will further help you with data
modeling. Of all the programming languages you will ever learn, SQL is
likely to remain useful for your entire career. Execute Program4 has a course
that will help.

Outside of learning SQL, the hardest part of the planning process is step 3:
deciding how to enforce the requirements of each attribute.

You will bring together some or all of the following techniques:

• Choosing the right column type
• Using database constraints
• Creating lookup tables
• Writing code in your app

Let’s dive into each one of these.

Choosing the Right Column Type

Each column in the database must have a type, but databases have few types
to choose from. Usually there are strings, dates, timestamps, numbers, and
booleans. That said, familiarize yourself with the types of your database. Un-
less you are writing code that has to work against any SQL database (which
is rare), you should not be bound by Rails’ least-common-denominator set
of types.

The type you choose should allow you to store the exact values you need. It
should also make it difficult or impossible to store incorrect values. Here
are some tips for each of the common types.

Strings In the olden days, choosing the size of your string mattered. Today,
this is not universally true. Consult your database’s documentation
and use the largest size type you can. For example, in Postgres, you
can use a TEXT field, since it carries no performance or memory burden
over VARCHAR. It’s important to get this right because changing column
types later when you need bigger strings can be difficult.

4https://www.executeprogram.com/courses/sql/lessons/basic-tables

43

https://www.executeprogram.com/courses/sql/lessons/basic-tables

Rational Numbers Avoid FLOAT if possible. Databases store FLOAT values
using the IEE 7545 format, which does not store precise values. Either
convert the rational to a base unit (for example, store money in cents
as an integer), or use the DECIMAL type, which does store precise
values. Note that neither type can store all rational numbers. One-
third, for example, cannot be stored in either type. To store precise
fractional values might require storing the numerator and denominator
separately.

Booleans Use the boolean type. Do not store, for example, "y" or "n" as
a string. There’s no benefit to doing this and it’s confusing. And yes,
people do this and I don’t understand why.

Dates Remember that a date is not a timestamp. A date is a day of the
month in a certain year. There is no time component. The DATE
datatype can store this, and allow date arithmetic on it. Don’t store a
timestamp set at midnight on the date in question. Time zones and
daylight savings time will wreak havoc upon you, I promise.

Timestamps As opposed to a date, a timestamp is a precise moment in
time, usually a number of milliseconds since a reference timestamp.
As discussed above, use TIMESTAMP WITH TIME ZONE if using Postgres.
If you aren’t using Postgres, be very explicit in setting the reference
timezone in all your systems. Do not rely on the operating system
to provide this value. Also, do not store timestamps as numbers
of seconds or milliseconds. The TIMESTAMP WITH TIME ZONE and
TIMESTAMP types are there for a reason.

Enumerated Types Many databases allow you to create custom enumer-
ated types, which are a set of allowed values for a text-based field. If
the set of allowed values is stable and unlikely to change, an ENUM can
be a good choice to enforce correctness. If the values might change, a
lookup table might work better (we’ll talk about that below).

No matter what other techniques you use, you will always need to choose
the appropriate column type. Next, decide how to use database constraints.

Using Database Constraints

All SQL databases provide the ability to prevent NULL values. In a Rails
migration, this is what null: false is doing. This tells the database to
prevent NULL values from being inserted. Any required value should have
this set, and most of your values should be required.

Many databases provide additional constraint mechanisms, usually called
check constraints. Check constraints are extremely powerful for enforcing
correctness. For example, a widget’s price must be positive and less than or
equal to $10,000. With a check constraint this could be enforced:

5https://en.wikipedia.org/wiki/IEEE_754

44

https://en.wikipedia.org/wiki/IEEE_754

ALTER TABLE
widgets

ADD CONSTRAINT
price_positive_and_not_too_big

CHECK (
price_cents > 0 AND
price_cents <= 1000000

)

If you try to insert a widget with a price of -$100 or $300,000, the database
will refuse. Thus, you can be absolutely sure the price is valid. Check
constraints can do all sorts of things. If you want all widget names to be
lowercase, you can do that, too:

CHECK (
lower(name) = name

)

Modifying these constraints becomes more difficult as the database gets
larger, because these sorts of changes can create locks on the table that
prevent access or modification or both. This can create downtime for your
app. There are strategies to deal with this that are beyond the scope of
this book, but the strong migrations gem6 is a great place to start with
understanding them. Note, however, that it’s entirely likely that you will
never reach the size of database where this would be a problem.

Here are the guidelines I find most useful:

• Any stable requirement should be implemented as a check constraint.
• Any critical requirement should be implemented as a check constraint.
• Unstable requirements on tables expected to grow might be better

implemented in code, so you can change them frequently, but it still
might be better to use a check constraint and wait for the table to
actually get large enough to be a problem.

The next technique for enforcing correctness is the use of lookup tables.

6https://github.com/ankane/strong_migrations

45

https://github.com/ankane/strong_migrations

Using Lookup Tables

When a column’s value should be one value from a static list of possible
values, an ENUM can work as we discussed above. If the possible values
are likely to change, or if users are modifying those values, or if you need
additional metadata to go along with the values, an ENUM won’t work. In
these cases, you need a lookup table.

In the data model above on page 37, you can see an example of this for
the widget’s status. Suppose we had three widgets in the database, two of
which have the status “Fresh” and the other “Approved”. Here’s how that
would look in the database using a lookup table:

Table 3.2: Example widgets table referencing a lookup table

id name widget_status_id

10 Stembolt 1
11 Thrombic Modulator 1
12 Tachyon Generator 2

Table 3.3: Example widget_statuses lookup table

id name

1 Fresh
2 Approved
3 Archived

Note a key difference between the physical and logical model. The logical
model simply states that a widget has a status attribute. To enforce cor-
rectness and deal with a potentially unstable list of possible values, we are
modeling it with a new table. In our code, a widget will belong_to a status
(which will has_many widgets).

When using lookup tables, you must create a foreign key constraint. This
tells the database that the value for widget_status_id must match an id in
the referenced widget_statuses table. This prevents widgets from having
invalid or unknown statuses, since widget_statuses contains all known
valid statuses.

A lookup table also allows modeling metadata on the referenced value. For
example, if only “Approved” widgets can be sold, we might model that with
a boolean column on the widget_statuses table:

46

Table 3.4: Example widget_statuses lookup table with metadata

id name allows_sale

1 Fresh false
2 Approved true
3 Archived false

The last tool available to enforce correctness is your app.

Enforcing Correctness in App Code

Some requirements are too difficult to enforce at the database layer, either
because of necessary complexity or because of a lack of stability. In these
cases, your app can enforce correctness by refusing to write data that violates
the requirements.

Rails validations are quite powerful at doing this, and this is the mechanism
you should use if you must validate correctness in code. Just be aware that
Active Record’s public API allows circumventing the validations. Anything
your database can possibly store, you can put into it using Active Record, no
matter what validations you have created.

That said, some requirements are so complex that using validations becomes
quite difficult and you’ll need to write a bunch of code to prevent bad data
from getting written.

For example, if only supervisors can change a widget’s status to “Approved”
for manufacturers created before July 10, 1998, except for the manufac-
turer “Cyberdyne Systems”, this is going to be a convoluted and hard-to-
understand validation. It would be simpler as code (and relatively straight-
forward to implement if you’ve followed the previous guidance and avoided
putting business logic in your Active Records).

Once you have decided how you are going to model everything, it’s time to
make your migrations.

3.4 Creating Correct Migrations

This section’s code is in the folder 14-04/ of the sample code.

Writing migrations is how we programmatically modify the database to
conform to the physical schema we want to use. Because Rails’ API for
doing this is not SQL, it’s important that we take some time to make sure
the migrations we write result in the schema we need. Rails’ API is powerful
and will save us time and make the work easier, but it lacks a few useful
defaults.

47

In the previous chapter, we created models so we could talk about some
model basics. Rather than edit those models and the schema it created, let’s
start over (you can’t do this in real life, but it’ll make this chapter simpler if
we do).

If we delete the migrations and fixtures created by bin/rails g model and
re-run bin/setup, we should be good to go.

> rm db/migrate/* test/fixtures/*.* && bin/setup
«lots of output»

The figure “Example Logical and Physical Models” on page 37 outlines what
we’re going to do, but to re-iterate:

• A Widget has a name, price, status, and manufacturer, all of which are
required.

• A Manufacturer has a name and an address, both of which are re-
quired.

• An address is a street and a zip code (both required).
• Widget names must be unique within a manufacturer.
• Manufacturer names must be unique globally.
• We’ll use lookup tables for addresses and widget statuses.
• We’ll use a database constraint to enforce a price’s lower-bound, but

code for the upper-bound.

It’s important that changes that logically relate to each other go in a single
migration file. Some databases, including Postgres, run migrations in a
transaction, which allows us to achieve an all-or-nothing result. Either our
entire change is applied successfully, or none of it is.

While we still want to end up with one migration, I find it easier to built it
iteratively. Write some of the migration, apply it and check it, then rollback
and continue until everything is correct.

The figure “Authoring Migrations” on the next page outlines this basic
process:

1. Create your migration file.
2. Add some code to it.
3. Apply the migrations and check the database to see if it had the desired

effect.
4. If anything is wrong, or you aren’t yet done, roll back the changes.
5. Repeat until you have correctly modeled the physical changes.

This allows you to take each change step-by-step, but still end up with only
one migration file that makes the cohesive change you’re making. In our
case, we want a single migration that creates the needed tables.

48

Figure 3.2: Authoring Migrations

49

3.4.1 Creating the Migration File and Helper Scripts

Before we create the migration file, we need three scripts to help this
process. I find that bin/rails db:migrate and bin/rails db:rollback
don’t consistently modify both the development and test schema. This
can result in a test schema that is not the same as what’s described in the
migration file, which can cause some confusing test behavior. Rather than
document this problem, let’s make two scripts to handle applying migrations
and rolling them back.

Here’s the script to migrate all databases (note again the duplicated checks
for -h and friends):

bin/db-migrate

#!/bin/sh

set -e

if ["${1}" = -h] || \
["${1}" = --help] || \
["${1}" = help]; then

echo "Usage: ${0}"
echo
echo "Applies outstanding migrations to dev and test databases"
exit

else
if [! -z "${1}"]; then
echo "Unknown argument: '${1}'"
exit 1

fi
fi

echo "[bin/db-migrate] migrating development schema"
bin/rails db:migrate

echo "[bin/db-migrate] migrating test schema"
bin/rails db:migrate RAILS_ENV=test

Here’s the one we’ll use to roll back all databases:

bin/db-rollback

50

#!/bin/sh

set -e

if ["${1}" = -h] || \
["${1}" = --help] || \
["${1}" = help]; then

echo "Usage: ${0}"
echo
echo "Rolls back the current migration from dev and test databases"
exit

else
if [! -z "${1}"]; then
echo "Unknown argument: '${1}'"
exit 1

fi
fi

echo "[bin/db-rollback] rolling back development schema"
bin/rails db:rollback

echo "[bin/db-rollback] rolling back test schema"
bin/rails db:rollback RAILS_ENV=test

Let’s also make a script called bin/psql that connects to our development
database. I realize that bin/rails dbconsole does this, but a) it requires us
to type a password each time, and b) it’s incredibly slow to start up because
it must load Rails first, only to delegate to the psql command-line client.

bin/psql

#!/bin/sh

set -e

if ["${1}" = -h] || \
["${1}" = --help] || \
["${1}" = help]; then

echo "Usage: ${0}"
echo
echo "Uses psql to connect to dev database directly"
exit

else
if [! -z "${1}"]; then

51

echo "Unknown argument: '${1}'"
exit 1

fi
fi

echo "[bin/psql] Connecting to widgets_development"
PGPASSWORD=postgres psql -U postgres \

-h db \
-p 5432 \
widgets_development

Note that because we have consolidated all dev-environment configuration,
we can safely rely on the database connection information to be consistent
for all developers, and thus hard-code it into this script.

We’ll need to make them executable:

> chmod +x bin/db-migrate bin/db-rollback bin/psql

It’s also a good idea to add these to bin/setup help. I’ll leave that as an
exercise for the reader.

Now, let’s create our migration file:

> bin/rails g migration make_widget_and_manufacturers
invoke active_record
create db/migrate/20251113150801_make_widget_and_ma. . .

For the sake of repeatability when writing this book, I’m going to rename
the migration file to a name that’s not based on the current date and time.
You don’t need to do this.

> mv db/migrate/*make_widget_and_manufacturers.rb \
db/migrate/20210101000000_make_widget_and_manufacturers.rb

With that set up, we can now iteratively put code in this file to generate the
correct schema we want.

3.4.2 Iteratively Writing Migration Code to Create the Correct
Schema

We’ll need to work a bit backward. We can’t create widgets first, because it
must reference widget_statuses and manufacturers. manufacturers must
reference addresses. So, we’ll start with widget_statuses.

52

By default, Rails creates nullable fields. We don’t want that. Fields with
required values should not allow null. We’ll use null: false for these fields
(even for nullable fields I like to use null: true to make it clear that I’ve
thought through the nullability).

I also like to document tables and columns using comment:. This puts the
comments in the database itself to be viewed later. Even for something that
seems obvious, I will write a comment because I’ve learned that things are
never as obvious as they might seem.

db/migrate/20210101000000_make_widget_and_manufacturers.rb

class MakeWidgetAndManufacturers < ActiveRecord::Migration[8.. . .
def change

→ create_table :widget_statuses,
→ comment: "List of definitive widget statuses" do |t|
→
→ t.text :name, null: false,
→ comment: "The name of the status"
→ t.timestamps null: false
→ end
→
→ add_index :widget_statuses, :name, unique: true,
→ comment: "No two widget statuses should have the same name"

end
end

Note that I’ve created a unique index on the :name field. Although database
indexes are mostly for allowing fast querying of certain fields, they are also
the mechanism by which databases enforce uniqueness. Thus, to prevent
having more than one status with the same name, we create this index,
specifying index: { unique: true }.

This will create a case-sensitive constraint, meaning the statuses "Fresh"
and "fresh" are both allowed in the table at the same time. Currently, the
developers control the contents of this table, so a unique index is fine—we
won’t create a duplicate status in a different letter case. If the contents of
this field were user-editable, I might create a case-insensitive constraint
instead. Sean Huber wrote a short blog post7 about how you could do this
if you are interested.

Next, let’s create the addresses table. Our user’s documentation said “street
and zip is fine”, so we’ll create the table with just those two fields for now.

7http://shuber.io/case-insensitive-unique-constraints-in-postgres/

53

http://shuber.io/case-insensitive-unique-constraints-in-postgres/

db/migrate/20210101000000_make_widget_and_manufacturers.rb

add_index :widget_statuses, :name, unique: true,
comment: "No two widget statuses should have the same n. . .

→ create_table :addresses,
→ comment: "Addresses for manufacturers" do |t|
→
→ t.text :street, null: false,
→ comment: "Street part of the address"
→ t.text :zip, null: false,
→ comment: "Postal or zip code of this address"
→
→ t.timestamps null: false
→ end
→

end
end

Again, liberal use of comment: will help future team members. At this
point, I like to run the migrations to make sure everything’s working before
proceeding.

> bin/db-migrate
[bin/db-migrate] migrating development schema
== 20210101000000 MakeWidgetAndManufacturers: migrating ====. . .
-- create_table(:widget_statuses, {comment: "List of definit. . .

-> 0.0027s
-- add_index(:widget_statuses, :name, {unique: true, comment. . .

-> 0.0008s
-- create_table(:addresses, {comment: "Addresses for manufac. . .

-> 0.0019s
== 20210101000000 MakeWidgetAndManufacturers: migrated (0.00. . .

[bin/db-migrate] migrating test schema
== 20210101000000 MakeWidgetAndManufacturers: migrating ====. . .
-- create_table(:widget_statuses, {comment: "List of definit. . .

-> 0.0017s
-- add_index(:widget_statuses, :name, {unique: true, comment. . .

-> 0.0003s
-- create_table(:addresses, {comment: "Addresses for manufac. . .

-> 0.0008s
== 20210101000000 MakeWidgetAndManufacturers: migrated (0.00. . .

54

I also like to connect to the database and describe the tables to see if it looks
correct. It may seem silly, but looking at the same information in a different
way can often uncover mistakes.

With Postgres, you can use the bin/psql script we made and type \d+
widget_statuses or \d+ addresses to display the schema. If anything looks
wrong—including a spelling error in a comment—use bin/db-rollback, fix
it, and move on.

Of course, we aren’t done yet, so we’ll bin/db-rollback anyway.

> bin/db-rollback
[bin/db-rollback] rolling back development schema
== 20210101000000 MakeWidgetAndManufacturers: reverting ====. . .
-- drop_table(:addresses, {comment: "Addresses for manufactu. . .

-> 0.0012s
-- remove_index(:widget_statuses, :name, {unique: true, comm. . .

-> 0.0012s
-- drop_table(:widget_statuses, {comment: "List of definitiv. . .

-> 0.0004s
== 20210101000000 MakeWidgetAndManufacturers: reverted (0.00. . .

[bin/db-rollback] rolling back test schema
== 20210101000000 MakeWidgetAndManufacturers: reverting ====. . .
-- drop_table(:addresses, {comment: "Addresses for manufactu. . .

-> 0.0006s
-- remove_index(:widget_statuses, :name, {unique: true, comm. . .

-> 0.0011s
-- drop_table(:widget_statuses, {comment: "List of definitiv. . .

-> 0.0002s
== 20210101000000 MakeWidgetAndManufacturers: reverted (0.00. . .

Because widgets must refer to manufacturers, we need to make
manufacturers next. We’ll use references to create the foreign key from
manufacturers to addresses. Rails’ default is to skip creating a foreign key
constraint. This is not a good default, because there’s no benefit to skipping
foreign key constraints.

We’ll use foreign_key: true to make sure the constraint gets created. We
cannot have manufacturers referencing non-existent addresses. We’ll also
add an index to the reference because we’ll definitely be navigating these
foreign keys and an index will ensure that navigation performs well.

db/migrate/20210101000000_make_widget_and_manufacturers.rb

t.timestamps null: false

55

end

→ create_table :manufacturers,
→ comment: "Makers of the widgets we sell" do |t|
→
→ t.text :name, null: false,
→ comment: "Name of this manufacturer"
→
→ t.references :address, null: false,
→ index: true,
→ foreign_key: true,
→ comment: "The address of this manufacturer"
→
→ t.timestamps null: false
→ end
→
→ add_index :manufacturers, :name, unique: true
→

end
end

And now, finally, we can make the widgets table:

db/migrate/20210101000000_make_widget_and_manufacturers.rb

add_index :manufacturers, :name, unique: true

→ create_table :widgets,
→ comment: "The stuff we sell" do |t|
→
→ t.text :name, null: false,
→ comment: "Name of this widget"
→
→ t.integer :price_cents, null: false,
→ comment: "Price of this widget in cents"
→
→ t.references :widget_status, null: false,
→ index: true,
→ foreign_key: true,
→ comment: "The current status of this widget"
→
→ t.references :manufacturer, null: false,
→ index: true,

56

→ foreign_key: true,
→ comment: "The maker of this widget"
→
→ t.timestamps null: false
→ end
→

end
end

We have only two steps left. We must enforce the uniqueness of widget
names amongst manufacturers, and enforce the widget’s price allowed
values. We’ll tackle the uniqueness requirement next.

To enforce the widget name/manufacturer uniqueness requirement, we can
create our own index on both fields using add_index:

db/migrate/20210101000000_make_widget_and_manufacturers.rb

t.timestamps null: false
end

→ add_index :widgets, [:name, :manufacturer_id],
→ unique: true,
→ comment: "No manufacturer can have two widgets with " +
→ "the same name"
→

end
end

This allows many widgets to have the same name, as long as they don’t also
have the same manufacturer.

To create the constraint on price, we can use the add_check_constraint
method. Prior to Rails 6.1, you needed to use reversible and execute to
put raw SQL in your migration. No longer!

We’ll add this to the migration file:

db/migrate/20210101000000_make_widget_and_manufacturers.rb

comment: "No manufacturer can have two widgets with " +. . .
"the same name"

57

→ add_check_constraint(
→ :widgets,
→ "price_cents > 0",
→ name: "price_must_be_positive"
→)
→

end
end

If you don’t know SQL or it’s still new to you, this syntax for what goes
into the second argument of add_check_constraint can seem daunting and
hard to derive. Your database’s documentation is a great place to start and
you can piece it together from that. A little bit of trial-and-error also helps,
and since you can easily apply and rollback your migration, a combination
of reading docs and trying things out will allow you to arrive at the right
syntax. That’s how I did it!

Also note that we used the optional :name parameter to give the constraint a
name. Like adding comments to our tables and columns, giving constraints
a descriptive name can be useful. If the constraint is violated, the name will
appear in the error message and it can be helpful to use that to start figuring
out what might have gone wrong.

Lastly, you’ll notice that we didn’t need to use any raw SQL, but we are still
using a SQL-based schema. A SQL-based schema is always a better option
from the start, because they you don’t have to remember to change it later
if you do need to use SQL in your migrations.

Let’s apply it:

> bin/db-migrate
«lots of output»

We aren’t quite done, because we have not modeled the upper-limit on price.
We planned to do that in code, so we need to make sure all of our model
classes are created and correct, following the guidelines we learned about
in “Active Record is for Database Access” on page ??.

First up is WidgetStatus. Since there is a to-many relationship with widgets,
we’ll use has_many :widgets. Note that this file will not already exist and
you must create it.

app/models/widget_status.rb

class WidgetStatus < ApplicationRecord

58

has_many :widgets
end

Next is Address. It has a to-many relationship with manufacturers, since
multiple manufacturers can exist at the same address. Also note that this
file won’t already exist.

app/models/address.rb

class Address < ApplicationRecord
has_many :manufacturers

end

We’ll add the other end of the relationship to Manufacturer:

app/models/manufacturer.rb

class Manufacturer < ApplicationRecord
has_many :widgets

→ belongs_to :address
end

Finally we’ll model Widget. Because we did not model the price’s upper-end
in the database, we should add it to the code now as a validation. Even
though we have no use-case that would trigger this validation, since it’s part
of the logical data model that we couldn’t model in the database, we have
to put it here.

Note that we aren’t putting any other validations in these models. The
database will enforce correctness and prevent bad data from being written.
We only need redundant checks if there’s a specific reason. We’ll discuss this
more in “Validations Don’t Provide Data Integrity” on page ??.

app/models/widget.rb

last_two: id_as_string[-2..-1]
}

end
→ belongs_to :widget_status

59

→ validates :price_cents,
→ numericality: { less_than_or_equal_to: 10_000_00 }
end

If you aren’t used to database constraints, it might feel like we’ve put
business logic in our database. In a way, we have, and we really should
consider testing some of it. The check constraint, in particular, seems hard
to be confident in without a test.

Let’s see what a test looks like for our database constraints.

3.5 Writing Tests for Database Constraints

This section’s code is in the folder 14-05/ of the sample code.

Like all tests, tests for the correctness of the data model have a carrying cost.
I don’t see a lot of value in testing null: false, or unique: true, because
these tend to be easy to get right. Check constraints are more like real code
and thus easier to mess up. I usually write tests for them.

Let’s write a test for the constraint around the widget’s price. We’ll need two
tests: one that successfully sets the widget’s price to a correct value, and
another that fails in an attempt to set it to a negative value.

Because this is testing the database and not the code in app/models, our
tests will use update_column, which skips validations and callbacks, writing
directly to the database. If we used update! instead, and we later added
validations to the Widget class, our test would fail to write the database at
all. Using update_column ensures we are testing the database itself.

To do that, we’ll set up a valid widget in the setup method, which requires
a widget status and a manufacturer (which requires an address).

test/models/widget_test.rb

require "test_helper"

class WidgetTest < ActiveSupport::TestCase
setup do
widget_status = WidgetStatus.create!(name: "fresh")
manufacturer = Manufacturer.create!(
name: "Cyberdyne Systems",
address: Address.create!(
street: "742 Evergreen Terrace",
zip: "90210"

60

)
)
@widget = Widget.create!(

name: "Stembolt",
manufacturer: manufacturer,
widget_status: widget_status,
price_cents: 10_00

)
end
test "valid prices do not trigger the DB constraint" do

assert_nothing_raised do
@widget.update_column(
:price_cents, 45_00

)
end

end
test "negative prices do trigger the DB constraint" do
ex = assert_raises do

@widget.update_column(
:price_cents, -45_00

)
end
assert_match(/price_must_be_positive/i,ex.message)

end
end

Note the way we are checking that we violated the constraint. We check
that the message in the assertion references the constraint name we used
in the migration: price_must_be_positive. This means our test should
hopefully only pass if we violated that constraint, but fail if we get some
other exception.

Now, let’s run the test.

> bin/rails test test/models/widget_test.rb
Running 2 tests in a single process (parallelization thresho. . .
Run options: --seed 10358

Running:

..

Finished in 0.058772s, 34.0298 runs/s, 68.0596 assertions/s.
2 runs, 4 assertions, 0 failures, 0 errors, 0 skips

61

This should pass. While we could write a test for the validation, I find those
sorts of tests less valuable since the code is straightforward with no real
logic.

Up Next

Data modeling is not easy and it can take a lot of experience to get com-
fortable with it. Hopefully, I’ve stressed how important it is to create your
database in a way that favors correctness and precision at the database layer,
as well as some helpful techniques to get there.

In the chapter after next, we’ll finish talking about models, but to do that,
we need to revisit business logic. While our database schema implements
some of our business rules, most of the logic that makes our app special will
be in code, so let’s talk about that next.

62

	Contents
	Acknowledgements
	Changes from Previous Versions
	Nov 5, 2025 - This Version
	Jan 1, 2025
	Dec 4, 2023
	March 15, 2022
	January, 21, 2021
	December, 12, 2020

	Introduction
	Why This Book Exists
	What is Sustainability?
	Why Care About Sustainability?
	How to Value Sustainability
	Assumptions
	The Software Has a Clear Purpose
	The Software Needs To Exist For Years
	The Software Will Evolve
	The Team Will Change
	You Value Sustainability, Consistency, and Quality

	Opportunity and Carrying Costs
	Why should you trust me?

	Business Logic (Does Not Go in Active Records)
	Business Logic Makes Your App Special…and Complex
	Business Logic is a Magnet for Complexity
	Business Logic Experiences Churn

	Bugs in Commonly-Used Classes Have Wide Effects
	Business Logic in Active Records Puts Churn and Complexity in Critical Classes
	Active Records Were Never Intended to Hold All the Business Logic
	Example Design of a Feature

	The Database
	Logical and Physical Data Models
	Create a Logical Model to Build Consensus
	Planning the Physical Model to Enforce Correctness
	The Database Should Be Designed for Correctness
	Use a SQL Schema
	Use TIMESTAMP WITH TIME ZONE For Timestamps
	Planning the Physical Model

	Creating Correct Migrations
	Creating the Migration File and Helper Scripts
	Iteratively Writing Migration Code to Create the Correct Schema

	Writing Tests for Database Constraints

